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Abstract                                                              
 
In many simple geometric patterns, when big spheres are close packed around small spheres, 
volumetric ratios arise, big sphere to small sphere.  And in nature, there are found major particles 
such as the average Kaon and Pion with much greater mass than the electron mass, and thus mass 
ratios are noted, large mass to small.  Amazingly, in many key cases, the most important particle 
mass ratios nearly equal the simplest geometric ratios.  We present some of the most important 
cases below, and we explore some possible causes.  It is unlikely that the close matches are just 
coincidence.   
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Introduction 
 
At least three Nobel laureates have bemoaned that science cannot explain why particles have the 
masses that they have.  The below and related works attempt to largely rectify that.  In 1995, the 
author presented, in a prominent journal, some examples of sphere volume ratios in abstract basic 
geometric patterns that nearly matched prominent particle mass ratios [1].  Since then, there have 
been empirical advances and new discoveries in science.  And the mass of the Higgs particle has 
been approximately determined, based on analysis of empirical data [2].  A few years after that, 
this author discovered a major platonic geometric ratio that nearly equals the Higgs to proton 
mass ratio. And he now presents that below, along with some of his other work before that.  The 
basic simplicity of the geometric ratios resulting in the close matches is quite impressive! 
  
Examples of Geometric Ratios and Particle Mass Ratios 
 
In some the many sketches below, we use some exaggeration, portions cut-away, section views, 
etc., so that otherwise blocked features, etc., are more clearly seen.  Discussion about each sketch 
also appears below each sketch.  For more examples, click or put in browser ‘URL address bar’: 
https://www.gsjournal.net/Science-Journals/research%20PapersQuantum%20Theory%20/%20Particle%20Physics/Download/8803  
to optionally read author’s other article, or go to his hopefully active website articles [3].  
 
Now SCROLL DOWN below, and begin:    



        	
Figure	1	
     In the top sketch, we show 1 big sphere around 3 medium-sized around 1 small sphere.  For the 
middle sketch, 1 big sphere around 4 spheres around 1 small sphere.  Sphere volume ratios thus 
result, based on patterns that the mathematician, Courant, considered the most basic structure in 2 
dimensions (the equilateral triangle) – and in 3 dimensions (the equilateral tetrahedron) [4].  We 
explore whether the resulting sphere volume ratios nearly match the mass ratios of the most 
prominent particles found in nature!    
    And since we can’t decide if the triangle or tetrahedron is the more basic, we also average the 
sphere volumes ratios that they generate together: (970 + 2702)/2 = 1836.00/1, and then look for a 
particle mass ratio nearly matching that.  That happens to be very near the proton to electron mass 
ratio, 1836.15/1.  And the volume ratio in middle sketch: 1 big sphere around 4 medium-sized, 
around 1 small sphere, gives the ave. Kaon particle to electron mass ratio, 970.0/1.  And in the 
upper sketch, 3 medium-size spheres around one small, gives a volume ratio (each medium-sized 
to small) equaling the ave. Pion to electron mass ratio, 270.1/1. 
 



 
	
Figure	2	
			Some other patterns, as shown above, give the same sphere volume ratios as in the previous 
drawing, ‘Figure 1’.  (It seems like the greater the number of different geometric patterns that lead 
to the same sphere volume ratio, the greater the chance of finding in nature -- particles with a 
rather similar mass ratio.  And the more closely such particle mass ratios will match those sphere 
volume ratios.)  See first footnote for a very similar drawing by author in a prominent journal, 
1995.  Except Fig. 2, above, leaves out a few details for simplicity.  
 
 



 
	
Figure 3 

   In the above, we attempt to nearly match a major particle mass ratio, the Muon particle to 
electron mass ratio.  We average spheres volumes inside each of 2 protons:  1 of 2 spheres inside 
top proton with 1 of 3 inside the lower proton. Each proton = 1836.15 electrons.   
   Our resulting estimate gives: 206.54 electron masses, vs. empirical reality of 206.77 electron 
masses for the Muon.  [(We also find, in many other cases too, that when averaging 2 different 
sphere volumes together (as generated from two different basic patterns) – that that often nearly 
matches other real particle mass ratios.  But we can only address a few such cases in this limited 
length article.)]   Averaging some other pairs of spheres in some other basic patterns also comes 
close to the 206.54/1 ratio result above.  
 
 



 
Figure 4 
   The above illustrates two different patterns giving the same volume ratio, (outer biggest sphere   
to each of the four small spheres nearer its center).  That rather basic sphere volume ratio turns 
out to be 2180.19/1, and motivates our expectation and hope of finding a major particle mass ratio 
near that ratio.  And we do find one!  The most prominent Lambda Hyperon, symbol (Λ0), has 
an empirical mass ratio, relative to the electron mass, of 2183.34/1, and was one of the earlier 
particles discovered.  Note, it is fine to use the more modern term, 'Baryon', instead of, 'Hyperon', 
in my articles. 
     The lower sketch shows one big outer sphere around 4 medium-sized spheres, and those close    

  packed around 4 small touching spheres.  The upper sketch shows the one outer sphere around 4   
  medium-sized, and each of those 4 around 6 platonically positioned spheres, and each of those 6  
 around a small sphere.  All small spheres, shown above, are equal. 
 



 
Figure 5     

   The above illustrates one more of many existing ways to construct the Volume Ratio (or mass 
ratio) equal to 2702/1.  That 2702/1 volume ratio is also very close to the mass equivalent value of 
the lowest of the very prominent ‘Sigma Hyperon Resonance’ (Σ*+) energies -- as compared to 1 
‘rest mass’ electron: a 2706/1 ratio.  
	
	
	
	
	
	



	
Figure 6 
   The above cross-sectional sketch gives a volume ratio (outer sphere to inner core sphere) of 
2995.03/1.  That 2995.03 is very close to the empirical mass equivalence of the lower of two very 
prominent Xi Hyperon resonance (Ξ*0) energies, 2997.7 and 3003.9 electron masses compared 
to 1 rest mass electron.  (So that lower resonance, 2997.7 electrons (the empirical result), can be 
compared with our abstract sketch result, above, 2995.03 electrons, a pretty close match.)   
   Interesting note:  If the sphere layering between the big outer sphere and core sphere were 8 
spheres around 6, instead of the 6 spheres around 8 shown, that would not change the outer 
sphere to core sphere volume ratio.  Those positioning possibilities, 6 spheres around 8, vs. 8 
spheres around 6, may be compared to ‘platonic Duals’.  That is – they are analogous to very 
symmetrical platonic solids with 6 vertices & 8 faces and with 8 vertices & 6 faces.   I.e., Those 
platonic solids are termed ‘Duals’ in solid geometry. 
	
	
	



	
Figure 7 
   The above sketch gives a volume ratio, (Outer sphere to inner centered dark sphere), of 
133.65/1.  It involves one very big outer sphere around 12 platonically positioned large spheres -- 
close packed around 20 platonically positioned very small spheres (but rather hidden and 
therefore shown near top of the page).  And that bundle of 20 spheres surrounds and touches one 
somewhat bigger dark sphere, which we’ll regard as a Proton because its bigger than each of the 
20 spheres.  That 133.65/1 volume ratio is very close to the Higgs particle mass empirically 
estimated to equal about 133.54 protons (compared to the 1 unit proton mass).    
   Additional information is provided under heading, ‘Interesting Discussion’, below. 
 
 
 
 

 



Interesting Discussion 
 
So, in a sense, the Platonic structure that was the goal of the first 8 books of Euclid, and which 
Plato thought god used to help lay out the universe [5] – also helped us here to estimate the mass 
of the so-called ‘god’ particle, the Higgs mass, a major goal of the mainstream’s Standard Model 
of Particle Physics.  (Our article’s second footnote, previously referenced, gives more details.)  
The icosahedron & dodecahedron patterns are termed platonic ‘Duals’.  And correspondingly, our 
patterns above used 12 spheres and 20 spheres -- to help us nearly match that Higgs to proton mass 
ratio. 
 
The upper sphere pattern shown in the previous page (which helped us construct our Higgs mass 
analogy) also appears on an old tablet in an old Japanese Buddhist temple.  One of the sphere 
patterns used in a substructure shown in our first drawing -- also appears on an old tablet in an old 
Japanese Shinto shrine.   Those sketches and information about them appear in a book, Sacred 
Mathematics -- Japanese Temple Geometry, with a forward written by Freeman Dyson [6].  
Unfortunately, many other such old tablets (having other sketches and discourses on them) – have 
long been lost, no longer to be found on old Japanese temples and shrines. 
 
Mass ratios presented in this article are based on particle mass values found in Wikipedia, 11-28-
2016 in articles entitled Electron, Pion, Kaon, Proton, Muon, and Hyperon, and may also be found 
using other Internet searches with adequate accuracy.  When we say, for example, “the mass ratio 
of the average prominent Pion particle, relative to the 1 electron mass” – we mean the following:  
We add up the mass of each of the three very prominent Pions in that class (those that were 
‘discovered early-on’):  the positively charged Pion (139.570 MeV/c2), the negatively charged 
Pion (also 139.570 MeV/c2), and the uncharged Pion (134.977 MeV/c2).  We divide that by 3, (the 
number of particles in the group), and then we divide that sum by the mass of 1 electron (0.510999 
MeV/c2).   That gives us, as expected, a ‘mass’ ratio that is ‘dimensionless’, since that seemingly 
awkward unit of mass, (MeV/c2), cancels out -- because our mass comparison is to the electron 
mass which we also expressed in units of (MeV/c2).   
 
It is interesting that before quark theory was well-developed, older physics books often expressed 
the mass of major mesons and other particle masses – in equivalent numbers of electron masses 
[7].  This tended to somewhat sensitize this article’s author to the possibility that the mass of the 
electron, itself, might partially contribute to the mass value of other particles of greater mass -- 
some with perhaps short lives, but plenty long enough to be very important.  And that by 
considering basic geometric patterns, including some positions ‘platonically directed’, and by 
considering the concept of ‘close packing of spheres’ – that both those considerations might help 
us generate fairly close estimates of the relative masses of prominent particles.  
 
Discourse continues below under the heading, ‘Important Considerations’. 
 
 
 
 
 
 
 



Important Considerations 

 

In order for this article’s methodology to work, we must assume that our different sized geometric 
sphere volumes are directly proportional to the different masses of the various particles.  I.e., the 
greater the volume of one big sphere in the pattern compared to the smallest in the pattern -- the 
greater a corresponding particle’s mass must be, compared to the small electron mass.  Thus, we 
must also assume that a particle of great mass is made up of the same density material as a particle 
of very low mass, as well as all particles in between, at least under certain conditions. This is 
similar to Bohr’s simple and early developed ‘Liquid Drop Model of the Nucleus’, that was rather 
successful.  In that model, the nucleus of the atom is regarded as like a water drop.  The density of 
material making up each of the various particles in the nucleus is regarded as practically 
incompressible and the same for the various particles comprising the nucleus.  (Or to speculate 
some, if the particle’s mass is determined by the amount of energy of an ethereal-like sphere 
pattern adjacent it, then the amount of energy in that ethereal sphere is proportion the volume of 
that ethereal sphere.) 

 
There seems to be no compact, free particles existing in the range of “less than 200 electrons 
worth of mass but greater than 1 electron mass”.  I believe the reason why relates to Heisenberg’s 
uncertainly principle and the ‘reduced Planck constant’, and is roughly as follows:  Even if such 
small compact, free particle mass tried to exist and harmonically vibrate or spin roughly at the 
speed of light, ‘c’; its corresponding angular momentum generated -- would still not equal as much 
as a ‘reduced Planck constant’ worth of angular momentum.  Thus, I think that not only would 
such a particle be difficult to measure accurately – the particle would even find it difficult to exist 
at all.  (The ‘free’ electron, however, is like a puffball or thin doughnut, and thus is not a compact 
particle.  Thus when it spins at roughly ‘c’, it finds it easier to create sufficiently great angular 
momentum.) 
 
The methodology, demonstrated and advocated in this article, has great merit, but yet has some 
limitations which we now discuss:  When two different volumetric ratios in two different basic 
patterns are averaged together, the result doesn’t always correspond to the mass ratio of two 
prominent particles.  This article could use the help of special ‘selection rules’ predicting when our 
‘methodology of averaging patterns’ will work and when it will fail.  And explaining why. 
 
Also, sometimes our basic geometric volume ratio lands midway between two nearly equal, 
important particle mass ratios.  But one of those particles, say, the neutral one, has a few electrons 
worth of mass more than our geometric ratio predicts, and the other particle, say, the charged one, 
has a few less electrons worth of mass than our midpoint.  This article could likely use the help of 
quark theory to predict how such small subtleties as ‘charge’ could cause an otherwise non-
predicted small mass difference to occur.  Or the help of a somewhat similar theory.   
 
The author realizes that this limited length article raises some questions, problems or issues not 
thoroughly addressed here.  And that some difficult issues may defy simple solutions, including 
some speculations that the author might propose if this article was longer.  
 
In this article, when we use the term, ‘resonance’ as applied to a particle -- the following is roughly 
what we mean:  A resonance energy is a special lump of energy in space with slightly greater mean 
lifetime and other special characteristics – compared to lumps of energy slightly greater or slightly 
less.   Or alternately, we can say, “there is an equivalent resonance mass, m, corresponding with 



that special energy lump, E, and that ‘E’ and ‘m’ are related by the famous equation, E = mc2.  In 
particular, in scattering experiments, where an incident high-speed particle mass interacts with a 
target particle mass, there is more scattering for the special total (mc2) value of the target particle 
plus incident particle.  That is – more so, than for other total energy values, i.e., those which total 
either a little more or a little less energy than that special resonance’ energy.  Or its ‘equivalent 
mass’ – to express it in another way.  
 
Conclusion 
 
There are dozens of examples where sphere volume ratios in geometric patterns (or the average of 
2 such geometric ratios) – nearly equal prominent particle mass ratios found in nature.  About 8 of 
the most interesting cases were presented here.  They were selected because they exemplified the 
most basic patterns and, thus, their geometric volume ratios came out especial close to matching 
prominent particle mass ratios.  Or nearly equal to a ratio, given by averaging the masses of 
particles comprising a prominent group of particles, all of nearly equal mass -- and as compared to 
a reference electron mass.  
 
Those examples are so basic, important and striking that the near matches are very unlikely to be 
just coincidental.  There were enough sphere patterns selected so that geometric analogies with all 
5 famous platonic solids was exemplified.   
 
There are some limitations in the success of the methodology advocated in this article – regarding 
predictions or preciseness of prediction.  Especially when tackling less prominent particle mass 
ratios and more complicated patterns, and when averaging two different patterns having different 
geometric ratios.  Successful matches are then not always achieved.  Some aspects of the use of 
quarks, or the like, might help further to ‘fine tune’ the preciseness of many close matches.  That is 
because the slight deviations seem related to whether a particle is charged, uncharged, has spin or 
lacks spin.  And it would be especially helpful to discover special ‘selection rules’ that predict 
when the averaging of 2 different geometric ratios together will succeed or fail to nearly matched a 
particle mass ratio.  And to understand why.  Further research is needed to resolve those issues.  
  
The author has attempted to probe deeply into why the methodology, as advocated in this article, 
works so impressively in such basic cases.  Thus, he recommends that the reader consider the 
following speculation:  What we often regarded as ‘empty space’ – is really not totally empty.  
There likely is, instead, a ‘electron-positron sea’ or some super-rarefied so-called ‘aether’ matter 
out there, regardless of what it is called.  And that it momentarily forms energized ethereal sphere-
like structures with ‘close packing of sphere’ features.  And the energy of those ethereal spheres 
interacts with dense globs of matter to help determine the energy and mass that the particle 
candidate will evolve with.   
 
To keep this article’s length limited, we did not pursue that speculation further, here.  We elected, 
instead, to concentrate on our main theme, i.e., our matching methodology, each geometric ratio 
with each particle mass ratio, and the effectiveness of that matching.  
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